Learning Pilog — 6: More Lists

The append predicate

: (? (append (a b) (c) @X))
@X=(a b c)
-> NIL
: (? (append @X @Y (a b c)))
@X=NIL @Y=(a b c)
@X=(a) @Y=(b c)
@X=(a b) @Y=(c)
@X=(a b c) @Y=NIL
-> NIL
(be append (NIL @X @X))
(be append ((@A . @X) @Y (@A . @Z)) (append @X @Y @Z))
: (? append (append (a b) (c) @X))
2 (append (a b) (c) (a . @Z))
2 (append (b) (c) (b . @Z))
1 (append NIL (c) (c))
@X=(a b c)
-> NIL

The reversepredicate

: (? (reverse (a b c) @X))
@X = (c b a)
(be reverse (NIL NIL))(be reverse ((@A . @X) @R)
(reverse @X @Z)
(append @Z (@A) @R))

Using an accumulator

(be accRev ((@H . @T) @A @R)
(accRev @T (@H . @A) @R) )
(be accRev (NIL @A @A))
(be reverse (@L @R)
(accRev @L NIL @R))
: (? reverse accRev ( reverse (a b c) @X))
1 (reverse (a b c) @R)
1 (accRev (a b c) NIL @R)
1 (accRev (b c) (a) @R)
1 (accRev (c) (b a) @R)
2 (accRev NIL (c b a) (c b a))
@X=(c b a)
-> NIL

Example: Palindrome Checker

(be palindrome (@L)
(reverse @L @L) )
: (? (palindrome ( r o t a t o r)))
-> T
: (? (palindrome ( a b c d e f g)))
-> NIL




Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Mia Temma

Mia Temma

These are cross-posts from my blog https://picolisp-explored.com. I’m writing about PicoLisp for beginners. Welcome!